Activities
This activity reinforces the strategies students have been practicing on each system by letting them create their own matrix operators and columns on the hydrogen atom and do some calculations with them.
In this small group activity, students multiply a general 3x3 matrix with standard basis row/column vectors to pick out individual matrix elements. Students generate the expressions for the matrix elements in bra/ket notation.
Students use the completeness relation for the position basis to re-express expressions in bra/ket notation in wavefunction notation.
Students review using the Arms representation to represent states for discrete quantum systems and connecting the Arms representation to histogram and matrix representation. The student then extend the Arms representation to begin exploring the continuous position basis.
For this problem, use the vectors \(|a\rangle = 4 |1\rangle - 3 |2\rangle\) and \(|b\rangle = -i |1\rangle + |2\rangle\).
- Find \(\langle a | b \rangle\) and \(\langle b | a \rangle\). Discuss how these two inner products are related to each other.
- For \(\hat{Q}\doteq \begin{pmatrix} 2 & i \\ -i & -2 \end{pmatrix} \), calculate \(\langle1|\hat{Q}|2\rangle\), \(\langle2|\hat{Q}|1\rangle\), \(\langle a|\hat{Q}| b \rangle\) and \(\langle b|\hat{Q}|a \rangle\).
- What kind of mathematical object is \(|a\rangle\langle b|\)? What is the result if you multiply a ket (for example, \(| a\rangle\) or \(|1\rangle\)) by this expression? What if you multiply this expression by a bra?
Students use completeness relations to write a matrix element of a spin component in a different basis.
This activity allows students to puzzle through indexing, the from of operators in quantum mechanics, and working with the new quantum numbers on the sphere in an applied context.
Students practice using inner products to find the components of the cartesian basis vectors in the polar basis and vice versa. Then, students use a completeness relation to change bases or cartesian/polar bases and for different spin bases.
Problem
Write (a good guess for) the following series using sigma \(\left(\sum\right)\) notation. (If you only know a few terms of a series, you don't know for sure how the series continues.)
\[1 - 2\,\theta^2 + 4\,\theta^4 - 8\,\theta^6 +\,\dots\]
- \[\frac14 - \frac19 + \frac{1}{16} - \frac{1}{25}+\,\dots\]
Problem
Write out the first four nonzero terms in the series:
\[\sum\limits_{n=0}^\infty \frac{1}{n!}\]
- \[\sum\limits_{n=1}^\infty \frac{(-1)^n}{n!}\]
- \begin{equation} \sum\limits_{n=0}^\infty {(-2)^{n}\,\theta^{2n}} \end{equation}
Students consider the dimensions of spin-state kets and position-basis kets.
Write out the terms in the following sums that have the lowest energy. Stop when you have at least 9 terms, but only stop at some point that is logical, given the symmetries and degeneracies. Briefly explain why you chose to stop when you did. You may have to guess what system you are working from the form of the sum and which eigenvalue(s) determine the energy. You may assume that low energies correspond to eigenvalues near zero. Clearly state any assumptions that you make. You may use bra/ket notation in your solutions. (If these directions are unclear, check out the solutions below for some examples.)
- \[\sum_{m=-\infty}^{\infty} c_m e^{im\phi}\]
- \[\sum_{m=1}^{\infty}\sum_{n=1}^{\infty} c_{mn} \sin\left(\frac{m\pi x}{L_x}\right)\sin\left(\frac{n\pi y}{L_y}\right)\]
- \[\sum_{n=1}^{\infty}\sum_{\ell=0}^{n-1}\sum_{m=-\ell}^{\ell} c_{n \ell m} \left|{n, \ell, m}\right\rangle \]
This short small group activity introduces students to the Leibniz notation used for partial derivatives in thermodynamics, in which the variables being held constant are given explicitly. Students are guided to associate variables to their proper categories.
In this lecture, the instructor guides a discussion about translating between bra-ket notation and wavefunction notation for quantum systems.
Students each recall a representation of vectors that they have seen before and record it on an individual whiteboard. The instructor uses these responses to generate a whole class discussion that compares and contrasts the features of the representations. If appropriate for the class, the instructor introduces bra/ket notation as a new, but valuable representation.
- How to form a state as a column vector in matrix representation.
- How to do probability calculations on all three representations used for quantum systems in PH426.
- How to find probabilities for and the resultant state after measuring degenerate eigenvalues.
Problem
- Let \[|\alpha\rangle \doteq \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix} \qquad \rm{and} \qquad |\beta\rangle \doteq \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix}\] Show that \(\left|{\alpha}\right\rangle \) and \(\left|{\beta}\right\rangle \) are orthonormal. (If a pair of vectors is orthonormal, that suggests that they might make a good basis.)
- Consider the matrix \[C\doteq \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \] Show that the vectors \(|\alpha\rangle\) and \(|\beta\rangle\) are eigenvectors of C and find the eigenvalues. (Note that showing something is an eigenvector of an operator is far easier than finding the eigenvectors if you don't know them!)
- A operator is always represented by a diagonal matrix if it is written in terms of the basis of its own eigenvectors. What does this mean? Find the matrix elements for a new matrix \(E\) that corresponds to \(C\) expanded in the basis of its eigenvectors, i.e. calculate \(\langle\alpha|C|\alpha\rangle\), \(\langle\alpha|C|\beta\rangle\), \(\langle\beta|C|\alpha\rangle\) and \(\langle\beta|C|\beta\rangle\) and arrange them into a sensible matrix \(E\). Explain why you arranged the matrix elements in the order that you did.
- Find the determinants of \(C\) and \(E\). How do these determinants compare to the eigenvalues of these matrices?
Students explore what linear transformation matrices do to vectors. The whole class discussion compares & contrasts several different types of transformations (rotation, flip, projections, “scrinch”, scale) and how the properties of the matrices (the determinant, symmetries, which vectors are unchanged) are related to these transformations.
The Pauli spin matrices \(\sigma_x\), \(\sigma_y\), and \(\sigma_z\) are defined by: \[\sigma_x= \begin{pmatrix} 0&1\\ 1&0\\ \end{pmatrix} \hspace{2em} \sigma_y= \begin{pmatrix} 0&-i\\ i&0\\ \end{pmatrix} \hspace{2em} \sigma_z= \begin{pmatrix} 1&0\\ 0&-1\\ \end{pmatrix} \] These matrices are related to angular momentum in quantum mechanics.
- By drawing pictures, convince yourself that the arbitrary unit vector \(\hat n\) can be written as: \[\hat n=\sin\theta\cos\phi\, \hat x +\sin\theta\sin\phi\,\hat y+\cos\theta\,\hat z\] where \(\theta\) and \(\phi\) are the parameters used to describe spherical coordinates.
- Find the entries of the matrix \(\hat n\cdot\vec \sigma\) where the “matrix-valued-vector” \(\vec \sigma\) is given in terms of the Pauli spin matrices by \[\vec\sigma=\sigma_x\, \hat x + \sigma_y\, \hat y+\sigma_z\, \hat z\] and \(\hat n\) is given in part (a) above.
Students find matrix elements of the position operator \(\hat x\) in a sinusoidal basis. This allows them to express this operator as a matrix, which they can then numerically diagonalize and visualize the eigenfunctions.
Students implement a finite-difference approximation for the kinetic energy operator as a matrix, and then use numpy to solve for eigenvalues and eigenstates, which they visualize.
Students, working in pairs, use their left arms to represent each component in a two-state quantum spin 1/2 system. Reinforces the idea that quantum states are complex valued vectors. Students make connections between Dirac, matrix, and Arms representation.
This is a small group activity for groups of 3-4. The students will be given one of 10 matrices. The students are then instructed to find the eigenvectors and eigenvalues for this matrix and record their calculations on their medium-sized whiteboards. In the class discussion that follows students report their finding and compare and contrast the properties of the eigenvalues and eigenvectors they find. Two topics that should specifically discussed are the case of repeated eigenvalues (degeneracy) and complex eigenvectors, e.g., in the case of some pure rotations, special properties of the eigenvectors and eigenvalues of hermitian matrices, common eigenvectors of commuting operators.
First, students are shown diagrams of cylindrical and spherical coordinates. Common notation systems are discussed, especially that physicists and mathematicians use opposite conventions for the angles \(\theta\) and \(\phi\). Then students are asked to check their understanding by sketching several coordinate equals constant surfaces on their small whiteboards.
- Students evaluate two given partial derivatives from a system of equations.
- Students learn/review generalized Leibniz notation.
- Students may find it helpful to use a chain rule diagram.
Students calculate the expectation value of energy and angular momentum as a function of time for an initial state for a particle on a ring. This state is a linear combination of energy/angular momentum eigenstates written in bra-ket notation.
Students calculate probabilities for energy, angular momentum, and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. This activity helps students build an understanding of when they can expect a quantity to depend on time and to give them more practice moving between representations.
A short improvisational role-playing skit based on the Star Trek series in which students explore the definition and notation for position vectors, the importance of choosing an origin, and the geometric nature of the distance formula. \[\vert\vec{r}-\vec{r}^\prime\vert=\sqrt{(x-x^\prime)^2+(y-y^\prime)^2-(z-z^\prime)^2}\]
Students are asked to find eigenvalues, probabilities, and expectation values for \(H\), \(L^2\), and \(L_z\) for a superposition of \(\vert n \ell m \rangle\) states. This can be done on small whiteboards or with the students working in groups on large whiteboards.
Students then work together in small groups to find the matrices that correspond to \(H\), \(L^2\), and \(L_z\) and to redo \(\langle E\rangle\) in matrix notation.
Students calculate probabilities for a particle on a ring using three different notations: Dirac bra-ket, matrix, and wave function. After calculating the angular momentum and energy measurement probabilities, students compare their calculation methods for notation.
Students re-represent a state given in Dirac notation in matrix notation